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Abstract
Maize is the second most important cereal crop in European agriculture and a widely used raw material for feed, food, and 
energy production. Climate change studies over Europe predict a significant negative change in maize production. Finding 
appropriate and feasible adaptation strategies is a top priority for agriculture in the twenty-first century. Long-term agricul-
tural experiments provide a useful resource for evaluating biological, biogeochemical, and environmental aspects of agri-
cultural sustainability and for predicting future global changes. For the first time, we have been able to formulate a response 
to the question of which sowing date or hybrid choice strategies will prove beneficial in the future for the Pannonian region, 
based on sufficiently long experimental data. The objective of the study was to analyze a 30-year period of a multi-factorial 
long-term experiment at Martonvásár (Hungary) searching for traces of climate change as well as for favorable combinations 
of agro-management factors that can be used as adaptation options in the future. To analyze and extrapolate the data both 
in space and time, a multivariate statistical (response surface) model and a process-based crop simulation model were used. 
The results of the study yielded the following conclusions: (1) intensification of fertilization would not promote sustainable 
development in the region, (2) late hybrids have no perspective in the Pannonian climatic zone, and (3) earlier planting may 
become an effective adaptation option in the future. Our comprehensive methodology combines long-term historical weather 
and climate projection data with statistical and simulation models for the first time to provide agricultural stakeholders with 
more reliable adaptation strategies. It is essential to facilitate effective knowledge transfer to encourage farmers to adopt the 
proposed new practices. The collection of more detailed data for the entire Carpathian Basin will allow for the improvement 
of the models and projections.
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1  Introduction

Maize (Zea mays L.) is the second most important cereal 
crop in European agriculture (EC 2022a). In Hungary, it is 
the most significant crop in terms of harvested area (KSH 
2022). Maize is widely used for feed, food, and energy 
production (EC 2022b). All these uses are expected to face 
significant impacts from climate change.

Studies on climate change in Europe consistently show 
rising temperatures. Precipitation patterns are also chang-
ing, with increases in northern Europe and decreases in 
parts of Southern and Eastern Europe (Olesen et al. 2011). 
In Hungary, significant warming is expected within the 
Carpathian Basin. The largest temperature rise is projected 
for summer, accompanied by a major reduction in summer 
precipitation (Pongrácz et al. 2011). However, the latest 
climate projections show considerable uncertainty (see 
Fig. 5).

Many modeling studies, at both global and regional 
scales, have explored how climate change may affect 
maize production. They have also assessed the potential 
of agro-management options like irrigation, fertiliza-
tion, planting dates, and hybrid selection. Webber et al. 
(2018) reported that drought losses for maize in Europe 
are likely to increase. Elevated CO2 will not offset these 
losses. Parent et  al. (2018) found that maize yields in 
Europe could increase by 4–7% if hybrids and sowing 
dates are optimized locally. Adaptation measures have 
been shown to reduce the yield gap between northern and 
southern Europe. This could lead to higher maize pro-
duction if farmers adopt best practices. Moore and Lobell 
(2014) highlighted maize’s high adaptation potential to 
climate change in Europe. Agricultural profits may slightly 
increase with adaptation but could fall significantly with-
out it. Large-scale modelling studies employ mechanis-
tic models to extrapolate and interpolate observed data, 
frequently encountering a loss of local relevance. This 
underscores the significance of emphasizing local data and 
expertise in refining global crop models to generate more 
precise and region-specific predictions (Silva and Giller 
2020; Kephe et al. 2021).

Local studies provide detailed insights into expected 
changes. Mereu et al. (2021) showed that maize yields in 
Italy will face consistent reductions from north to south. 
Bassu et al. (2021) predicted that by 2060, maize yields 
in the Mediterranean region could decrease by 14–17%. 
This loss may only be partially mitigated by adjusting 
genotypes and sowing dates. In northern Europe, warmer 
conditions may allow maize to expand northward. Ecker-
sten et al. (2012) found that silage maize could maintain 
adequate quality annually in southern Sweden by the end 
of the century. However, in central Sweden (60 °N), about 

30% of the years would fail even for the earliest cultivars. 
Žydelis et al. (2021) predicted maize yield increases of 
200–300 kg ha−1 per decade in South Scandinavia and 
the Baltic region. In southern Romania, Cuculeanu et al. 
(1999) found maize to have negative responses to climate 
change. Effective strategies include irrigation, longer-
maturing hybrids, later sowing, and increased nitrogen 
use. Parker et al. (2017) noted that earlier planting in Ger-
many may raise yields but adds management costs and 
risks. Buhiniček et al. (2021) argued that early hybrids 
may not be the best choice for Southeast Europe. In Hun-
gary, Fodor et al. (2014) estimated yield losses of up to 
2000 kg ha−1 y−1 by 2100 from the current average yield 
of 6000 kg ha−1. However, sustainable management could 
reverse these trends (Marton et al. 2020).

Adaptation strategies vary by region. They depend on 
local conditions and opportunities. This highlights the 
importance of local field experiments for calibrating and 
validating models. Models must be tested before address-
ing scientific or practical problems (Kersebaum et al. 2015; 
Ginaldi et al. 2016; Choruma et al. 2019; Liang et al. 2018). 
Multi-factorial experiments examine the effects of two or 
more factors, such as variety selection (V), fertilization (F), 
irrigation (IR), planting date (P), and plant density (PD). 
Russelle et al. (1987) identified the optimal F×P combi-
nations for irrigated maize in Nebraska over three years. 
Tsimba et al. (2013) studied V×P interactions for maize in 
New Zealand and concluded that delayed planting is not 
ideal. Bassu et al. (2021) analyzed V×P×PD interactions 
in Italy under optimum management over 3 years. They 
found early sowing to have a larger yield effect than cultivar 
selection. However, short trials like these may not capture 
long-term climate trends. Weather over 2–5 years may not 
represent local climate variability or climate change-induced 
trends.

Although long-term agricultural experiments (LTEs) have 
numerous constraints and weaknesses (e.g., change of geno-
types) they are the only way to identify long-term trends 
(Berti et al. 2016) as well as robust, site-specific features of 
the interactions between the investigated factors. By defini-
tion, these experiments are carried out for at least 20 con-
secutive years and study crop and/or livestock production, 
nutrient cycling, and environmental impacts of agriculture 
(Grosse et al. 2020; Macholdt et al. 2020; Li et al. 2023; 
Pereyra-Goday et al. 2024). They provide a useful resource 
for evaluating biological, biogeochemical, and environmen-
tal dimensions of agricultural sustainability and for predict-
ing future global changes (Rasmussen et al. 1998; Reckling 
et al. 2018). These experiments are valuable for spatially 
differentiated data analyses and reuse of data in modelling 
studies for validating model capability and performance 
(Grosse et al. 2020; Rasmussen et al. 1998). LTEs are long 
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enough to detect the effects of climate change on the factors 
investigated in the experiments (Donmez et al. 2023) yet, 
they cannot give us final answers on the expected changes in 
climate in the future - and their implications on maize crop 
performance. Recent decades have seen a shift in LTE focus 
from specific practices to combinations of practices and their 
interactions. This more holistic approach supports climate-
smart agroecosystem management (Blanchy et al. 2024).

Although our study is geographically limited, it is a good 
representation of Hungary and its wider surroundings, the 
Carpathian Basin, in terms of maize production. The Car-
pathian Basin, or the Pannonian climatic zone, is dominant 
on a European scale and it covers several countries. The 
amount of maize produced in this region exceeds that of 
France, the largest maize producer in the EU. The results 
of climate change models indicate that the Pannonian basin 
will experience significant ramifications across multiple sec-
tors and the ecosystem, positioning it as a region of Europe 
that will be particularly vulnerable to the consequences of 
climate change. This area is projected to have the highest 
number of severely affected sectors in Europe (Lukić et al. 
2019). As the quality of available methods, soil data, and 
climate projections improves, it will be possible to refine cal-
culations and forecasts of productivity for this crucial region. 
The most recent study of this region was carried out more 
than 10 years ago. Consequently, there is a significant need 
for updated research. In recent years, the 100-m resolution 
soil map of Hungary has been produced with the support of 
artificial intelligence, the latest IPCC climate projections 
have become available, and the database of the Martonvásár 

long-term field experiments has been completed. However, 
key questions remain. How is the region’s productivity 
changing? If trends are negative, what can reverse or miti-
gate them?

The objective of the current study is to analyze a 30-year 
period of a multi-factorial (Variety × Fertilization × Plant-
ing date; V×F×P) LTE at Martonvásár, Hungary (Fig. 1) 
searching for the traces of climate change in the yield trends 
as well as for favorable combinations of agro-management 
factors that can be used as adaptation options in the future.

2 � Material and methods

2.1 � Soil and climatic characteristics 
of the experiment area

The field trial was carried out on the experimental farm of 
the Centre for Agricultural Research, Martonvásár, Central 
Hungary (N 47°19′, E 18°47′, 110 m asl, see embedded 
map in Fig. 8.). The soil is classified by FAO-WRB (IUSS 
Working Group 2015) as a Haplic Chernozem (34% sand, 
42% silt and 24% clay in the 0–25 cm layer), with average 
pHH2O of 7.59, 1.84% CaCO3, 3.39% Soil Organic Matter, 
and 1799/374/429 mg kg−1 total N/P/K content. Based on 
the water retention curve measured in the laboratory, the 
saturated water capacity, the field capacity, and the water 
content at wilting point are 0.476, 0.322, and 0.134 cm3 
cm−3, respectively. In order to gain insight into the spatial 
scalability of the results that will be presented subsequently, 

Fig. 1   Aerial photo of the 
long-term field experiment at 
Martonvásár (24/06/2024) and 
its immediate surroundings. The 
multi-factorial experiment was 
initiated in 1991 with the aim 
of investigating the long-term 
effects of combinations of vari-
ety, fertilization, and planting 
date treatments. Aerial photo by 
György Balassa, ground photo 
by Gabriella Málovics.
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an investigation was conducted into the prevalence of the 
soil type of the Martonvásár area. According to the global 
soil map of the World Reference Base for Soil Resources 
(IUSS Working Group 2015) Chernozems cover 20.7% (1.17 
million hectares) and 15.6% (2.39 million hectares) of the 
arable area in Hungary and in the Carpathian Basis, respec-
tively. In Hungary, Chernozems account for the largest share 
of arable land, ahead of Vertisols and Gleysols.

Long-term, annual meteorological data for the area, 
recorded at an on-site station, are shown in Fig. 2. For each 
year, precipitation sum (Psum), mean temperature (Tmean), 
the number of hot days when the daily maximum tempera-
ture is over 30 °C (nrHotD), the number of days with pre-
cipitation (nrPD) when precipitation exceeds 0.1 mm, vapor 
pressure deficit (VPD) and total reference evapotranspiration 
(refET0, defined by Allen et al. 1998) are plotted.

In the Supplementary Material, these indicators are pre-
sented for the vegetation period, the flowering period and 
also for the grain filling period (Fig. SM1). The significance 
of the trend in climatic characteristics was tested using 
t-tests, and t-test conditions (normality of the residuals and 
absence of auto-correlation) were tested using Jarque-Bera 
and Durbin-Watson tests, respectively, with the help of the 
statsmodels 0.13.5 Python package. The required condi-
tions for applicability were met for all the characteristics 
examined.

Trends of the above climatic indicators were investigated 
for the whole study area to see how the changes at Mar-
tonvásár are representative of trends across the region. For 
this purpose, the FORESEE database (Kern et al. 2024) 
was used. Its 10 × 10 km resolution grid covers the area 

of Hungary with 1014 cells containing observation based, 
spatially interpolated, daily weather data.

We also examined the correlation between yields in Mar-
tonvásár and the national average at 5% significance level. 
The country-level yield data were obtained from the open-
access database of the Hungarian Statistical Office.

2.2 � Experimental design

The experiment involves three factors: four planting dates 
(P), five fertilization doses (F), and five varieties (V) in 
every single year. The choice of varieties changed over the 
years, reflecting breeding progress but in each year (Y) five 
different varieties were sown from the early, medium and 
late maturity groups. The list of varieties used in the trial is 
shown in Table 1. FAO number is a characteristic of maize 
maturity groups (Jugenheimer 1958): the lower the number, 
the fewer heat units that are required to reach grain matu-
rity. According to their FAO numbers, early (FAO 290–320) 
medium (FAO 330–420) and late (FAO 430–550) varieties 
were sown in each year. In the five fertilization treatments 
(F=1 to 5) 0, 60, 120, 180, and 240 kg ha−1 N was applied 
annually, two weeks before the first planting date. Planting 
date treatments are described in Table 2.

We aimed to have a hybrid from each of the three matu-
rity groups in the trial every year. Although there were no 
hybrids included in the trial every year, the official crop 
investigation and certification system in Hungary guaran-
tees that the expected yield of the new registered hybrids 
included in the trial will be at least as high as that of the 
older cultivars.

Fig. 2   Weather conditions of the experimental site between 1992 and 
2021, Martonvásár, Hungary. Data were collected by an onsite mete-
orological station maintained by the Hungarian Meteorological Ser-
vice. By definition, a day is hot if the maximum temperature exceeds 

30 °C. VPD and refET0 denote vapor pressure deficit and reference 
evapotranspiration, respectively. Dotted (red) lines indicate (signifi-
cant) linear trends.
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In order to conserve soil quality, byproducts were left 
in the plots and incorporated into the soil after harvest 
in each year. The soil organic carbon (SOC) content is a 
frequently used indicator of soil quality. SOC was meas-
ured in 1989, before the experiment began: 20 holes were 
drilled. In 2018 (one hole from each treatment and repli-
cate) a total of 80 holes were drilled. Samples were taken 
from the holes from three depths (0–30, 30–60, and 60–90 
cm) and the SOC content of the samples was measured 
in an accredited laboratory. To determine if there was a 
significant change in SOC and, by extension, soil quality, 
we conducted the Mann-Whitney U-tests and Permutation 
tests (Good 2005).

The experiment has four replications. Planting date was 
the main plot factor of the trial and was laid out according 

to a Latin square design with four superrows and four 
supercolumns, denoted by factors SR and SC, respectively 
(Fig. 3). Each superrow was divided into five longrows 
(LR), to which the five fertilizer levels were allocated. Fur-
thermore, each main plot was divided into five columns 
(CL) to accommodate the five varieties tested in each year. 
The observational unit is the subplot (SP), located at the 
longrow×column intersections.

2.3 � Statistical analysis

In the treatment factors planting dates, fertilization doses 
can be treated as both qualitative (P, F) and quantitative (D, 
N) characteristics. Additionally, the factor variety (V) and 
year (Y) can be explored by its quantitative FAO classifica-
tion (M) and time trend (T), respectively. For the latter two, 
we do not expect that quantification can explore all varia-
tion seen within the factors. However, the aim of the current 
analysis is to explore the quantitative nature of all four fac-
tors. A general overview on model development is shown in 
Fig. 4. Two final models were developed: One model with a 
single response surface curve fitted across years and another 
model fitting separate response surface curves for good and 
bad years, with below-average and above-average yields, 
respectively.

2.3.1 � Model development for single surface model

Block  model  The statistical model used for analysis is 
developed here by first considering a single year and then 
extending to multiple years. To represent the field layout and 
allocation of treatments to experimental units, the following 
block model (Piepho et al. 2003) is used for a single year, 
using the block factors defined before:

Here, SR.SC corresponds to main plots, and SR.SC.
LR.CL corresponds to subplots. Hence, all six block fac-
tors shown in Fig. 3 are represented. All design effects in 
this block model are modelled as random. We extend the 
model to multiple year by extending each effect with the 
factor year (Y):

Year is denoted as the repeated factor (Piepho et al. 
2004) because it indexes repeated observations on the 
same design unit. The design unit itself is identified by 
the level of the effect in (1) that is extended by factor Y 
in (2). For example, main plots are identified by levels of 
the effect SR.SC, and all observations on the same main 

(1)
SR + SC + SR.SC + SR.LR + SR.SC.CL + SR.SC.LR.CL

(2)
SR.Y + SC.Y + SR.SC.Y + SR.LR.Y

+ SR.SC.CL.Y + SR.SC.LR.CL.Y

Table 1   List of varieties used in the experiment. The Years column 
indicates the period of years when the varieties were used in the 
experiment.

Variety FAO number Years

Mv Tc 1287 320 1992–1994
Mara 290 1995–1998
Mara 290 1999–2000
Mv 272 300 1999–2001
Mv 277 300 2002–2021
Norma 370 1992–1913
Dáma 330 2001–2003
Hunor 350 2004–2021
Furio 390 1992–1994
Mv 355 400 1995–2020
Tarján 380 2014–2021
DK 524 530 1992–1994
Maya 430 1995–1997
Botond 420 1998
DK 608 550 1992–1993
Mv 1514 540 1994
Mv 484 480 1995–1996
Maraton 450 1997–2008
Miranda 460 2009–2015
Danietta 500 2016–2020
Mv 352 500 2021

Table 2   Planting date 
treatments used in the 
experiment. DOY denotes the 
day of the year.

Planting 
date (P)

Planting dates 
(DOY): min / 
median / max

1 94 / 103 / 116
2 104 / 113 / 122
3 115 / 123 / 131
4 127 / 134 / 141
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plot are assumed to be serially correlated. Here, we use 
the first-order autoregressive AR(1) model with all design 
effects in (2) except for the subplots where we additionally 
allow for heterogeneous variances (ARH(1)).

Treatment model  The treatment model is developed using 
the P, F, and V factors included in the experiment. The basic 
treatment model for a single year is as follows:

This model is modified to account for the random factor 
Y by adding a random main effect for Y and also adding all 
effects in (3) crossed with Y as random. Hence, the extended 
model is as follows:

where random effects are listed after a colon. The full model 
is obtained by combining models (2) and (4).

Response surface regression  Models so far treated P, V, F, 
and Y as qualitative factors. However, P can be quantified 
by day of year (D) and F by the amount of nitrogen (N). 
Additionally, V can be quantified by the FAO number M 
and Y can be quantified by the continuous variable T for 

(3)
V × F × P = V + F + P + V.F + V.P + F.P + V.F.P

(4)

V × F × P × Y = V + F + P + V.F + V.P + F.P + V.F.P +

Y + V.Y + F.Y + P.Y + V.F.Y + V.P.Y + F.P.Y + V.F.P.Y

calendar year. In the latter two cases, we do not expect 
that all differences in V and Y can be covered by M and T, 
respectively. Furthermore, note that preliminary inspec-
tion revealed that N shows a response with diminishing 
returns reaching a plateau and then dropping only slowly 
with further increasing N. A quadratic model in N may 
not represent this well. Hence, we experimented with dif-
ferent powers of N and decided to replace N with N1/2. To 
simplify the presentation, we replaced N values by their 
square root but kept the symbol N to represent the factor. 
We fitted a second-order response surface model with all 
four variables D, N, M, and T. Such a model is satisfying if 
there are no serious deviations from the response surface. 
To check this assumption, we first fitted a second-order 
response surface regression to single-year data using D, 
M, and N as quantitative regressor variables. In that first 
step, we fitted the treatment model given by the following:

separately for each year (Y) and assessed the lack of fit using 
the fixed effect V.F.P. In addition, the model comprised all 
random design effects in Eq. (1). The model fit was satisfac-
tory (see Supplementary Material), hence we considered an 
extension of the second-order response surface model by 

(5)
D + D.D + M + M.M + N + N.N + D.M

+ D.N + M.N + V.F.P

Fig. 3   Layout of the experi-
ment. The green, blue, yellow, 
and red fields denote different 
planting dates. The planned 
dates after 2010: A—first dec-
ade of April, B—second decade 
of April, C—third decade of 
April, D—first decade of May 
(10 days later than before 2010). 
Numbers in the colored fields (1 
to 5) denote the tested varieties 
within a year (varieties within 
a year were sorted accord-
ing to FAO numbers). The 
color shades denote different 
N fertilization levels (darker 
shades for higher levels, from 
0 to 240 kg ha−1 y−1 nitrogen). 
Latin numbers (I to IV) denote 
replicates. One representative of 
superrows, supercolumns, lon-
grows, columns, and subplots is 
denoted with SR, SC, LR, CL, 
and SP rectangles, respectively.
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inclusion of the continuous factor T for the calendar year. 
In this case, no lack-of-fit test (test of V.P.F.Y) was per-
formed for the across-year analysis as we assumed that the 
trend will not explain years completely and there is for sure 
year-by-year variation that will be captured by the random 
effects involving Y in Eq. (4). Additionally, both factors Y 
and V were now assumed as random, while quantitative vari-
ables M and T were taken as fixed. The full model therefore 
included the second-order response surface regression on 
variables M, D, N, and T as fixed effects, all effects from (4) 
including either V or Y as random effects, and all effects of 
(2) as random effects.

After fitting the response surface regression for all four 
quantitative variables, the fixed effects were subsequently 
pruned by discarding non-significant effects, observing the 
marginality principle. Thus, we started by inspecting the 
highest-order interaction and removed it if it was not signifi-
cant (at α = 0.05), in which case we moved on to the nearest 
lower-order interactions to proceed with the next tests, etc. 

A summary of the covariates used in the regression analyses 
is presented in Table SM1.

2.3.2 � Model development to fit separate response surface 
curves for good and bad years

For the final model developed above we inspected best linear 
unbiased predictions (BLUPs) for the random deviations of 
Y from trend T. Based on these BLUPs we fitted a separate 
response surface regression for (i) years with positive (=good 
years) and negative BLUP (=bad years). Again, fixed effects 
crossed with group were selected via backward selection.

The fitted models are reported as contour plots for 
two of the four variables (two out of the four variables 
D, M, N, and T), fixing the other two at specific values. 
For analysis, we centered M at 350, T at 2010 and D at 
120. This linear shift is intended to numerically stabilize 

Fig. 4   The general analysis 
approach leading to two final 
models. Note that block effects 
and specific variance-covariance 
structures are not shown here 
to simplify presentation. The 
terms F, P, V, and Y represent 
qualitative factors fertilizer 
dose, planting date, variety, and 
year. The terms N, D, M, and T 
represent quantitative variables 
fertilizer dose, planting time, 
FAO number, and time trend. 
BLUP is the abbreviation of 
best linear unbiased prediction.
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the regression analysis. It does not affect slope estimates 
but does shift the intercept. The fitted values are not 
affected.

The statistical analysis was performed using ASReml 
4.2 standalone for analysis and PROC RSREG in SAS 
for graphics. For those interested in further details on the 
method used, we recommend the following publications: 
Box and Draper 2007; Piepho and Edmondson 2018.

Note, that in exploring possible temporal trends the effect 
of a total of 58 annual and monthly environmental factors 
(see examples in Fig. SM1) was also investigated. These 
factors were included as covariates in the single response 
surface model. As detailed in the Discussion section, 
weather-related covariates (Table SM2.) were not used in 
the final model, since year factor (Y) has been shown to be 
a reasonably good integrator that aggregates the impact of 
weather factors and their variations with sufficient statistical 
confidence.

Though there are many reasons why results from a 
LTE can be useful for providing useful information on 
promising measures to adapt to a changing climate; yet, 
there are also limitations in view of various aspects: (i) 
shifts in future seasonality (i.e., shifts in rainfall pat-
terns but also frost risk patterns, etc.) that are part of 
climate change projections, need to be considered when 
deriving potentially promising adaptation options from 
experiments conducted historical (past) weather condi-
tions; (ii) effects of elevated atmospheric CO2 concentra-
tion: although these have to be considered most for crops 
of the C3 photosynthetic type (like wheat or barley) (e.g., 
Lobell and Gourdji 2012; Rötter and van de Geijn 1999) 
elevated CO2 also has beneficial effects on C4 crops 
like maize, in particular in improving their water use 
efficiency under drought conditions (e.g., Durand et al. 
2018) as is also the case for C3 crops (O'Leary et al. 
2015). To overcome these shortcomings crop growth 
simulation was used for extrapolating the patterns 
detected in the LTE results for the future. Crop mod-
eling has the potential to help us understand the relative 
influence of environmental factors (such as climate and 
soil) and genotype and management on the outcomes of 
long-term experiments. For example, Dobermann et al. 
(2000) explored this in their research.

2.4 � Crop model simulations

The potential of the choice of planting date as a mitigation 
option was examined in depth using the Biome-BGCMuSo 
biogeochemical model. The Biome-BGCMuSo model is a 
general-purpose, process-based model that simulates the full 
carbon, nitrogen, and water budget of terrestrial ecosystems 
(Fodor et al. 2021; Hidy et al. 2022). Biome-BGCMuSo is a 
branch of the well-known Biome-BGC model, which was first 
developed by Running and Hunt (1993). Over time, the model 
has undergone significant improvements and expansions. The 
enhancements addressed key areas such as soil processes, man-
agement options, and disturbance effects on plant physiology. 
Many other processes were also refined (Hidy et al. 2016). 
The model was further improved to simulate the effects of 
stress factors, including drought, nitrogen deficiency, and heat 
stress. For cropland simulations, the model requires meteoro-
logical, soil, and crop input data, as well as detailed manage-
ment information. This includes the timing and amount of fer-
tilizer, planting and harvest dates, and residue management. 
Locally measured meteorological and soil data were used as 
inputs. Observed plant data, including yield, maximum leaf 
area index (LAImax), flowering date, and harvest index, were 
used for model calibration. Calibration was performed using 
the Conditional Interval Reduction Method (CIRM) (Hollós 
et al. 2022). This machine-learning approach uses decision 
tree-based white box approximations. It calibrates parameters 
such as the length of vegetative and reproductive periods, 
specific leaf area, and biomass partitioning into roots, stems, 
leaves, and kernels. CIRM effectively uses limited data as con-
straints to ensure realistic simulations. For example, it ensures 
that LAImax stays within observed intervals. Yield data was 
used to minimize the difference between the observation and 
the simulation during calibration. The rest of the observations 
(Table 3) were used as constraints to ensure realistic simula-
tions with the calibrated model parameters. Calibration only 
included treatments meeting the following conditions: nitrogen 
level between 120 and 180 kg/ha, hybrid FAO number between 
300 and 400, and planting dates between day of year (DOY) 
105 and 120. These conditions align with typical practices of 
Hungarian farmers during the study period.

With a minor change, we applied the method suggested 
by Ojeda et al. (2018) to assess model performance both in 

Table 3   Range of observed plant phenotypic data supporting crop model calibration used as constraints in the CIRM method. Flowering dates 
are given in DOY.

Observed feature Minimum Maximum Observation period

Flowering date 176 192 2001–2022
Maximum of leaf area index 2.9 4.2 2001–2004 and 2017–2022
Harvest index 0.48 0.55 2005–2017
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calibration and validation. The following statistical indica-
tors were used: concordance correlation coefficient (CCC) 
defined by Lin (1989), mean absolute error (MAE) defined, 
e.g., in Willmott and Matsuura (2005) and mean signed 
error (MSE, also known as bias) which is also defined in 
Lin (1989) We decided to use MAE instead of root mean 
square error as the former has some advantages over the 
latter: MAE is a more natural and unambiguous measure of 
average error (Willmott and Matsuura 2005).

During validation, simulations were carried out for the 
2001–2020 period for a 10 × 10 km resolution grid covering 
the area of Hungary with 1014 cells. For each cell, soil and 
weather data were retrieved from the DOSoReMI (Pásztor 
et al. 2020) and the FORESEE (Kern et al. 2024) databases, 
respectively. For all simulations 150 kg/ha/year N fertilizer 
level and April 25 (DOY = 115) as planting date were used 
uniformly. Simulated yields were aggregated on NUTS-3 
(county) level (EuroStat 2024) and compared to the observed 
yield data retrieved from the database of the Hungarian Sta-
tistical Office.

For future simulations, observed weather data was replaced 
with projections (Fig. 5) from five Global and Regional Cli-
mate Model (GCM-RCM) combinations under the RCP4.5 
and RCP8.5 scenarios (van Vuuren et al. 2011). Simula-
tions were conducted for two future periods, 2041–2060 
and 2081–2100. This resulted in 20 future simulations for 
each grid cell: 10 using current agro-management practices 
(BAU – Business As Usual) and 10 with planting dates 
shifted three weeks earlier (3WEP). Results from BAU and 

3WEP were aggregated separately and compared across the 
baseline period (2001–2020) and future periods using color-
coded maps. Simulations concerning the future also take into 
account the increase in atmospheric CO2 concentrations, as 
the process-based crop model (Biome-BGCMuSo, Fodor 
et al. 2021) employed in this study considers the impact of ele-
vated CO₂ concentrations on photosynthesis and evaporation.

3 � Result and discussion

3.1 � Trends of climatic indicators and yields

At the long-term experiment site, significant trends were 
found for the temperature-related (Tmean and nrHotD) indi-
cators as well as for Vapor Pressure Deficit. The expected 
number of hot days in the flowering period more than dou-
bled and the mean temperature rose by more than 2 °C during 
the 30 years of the study period (Fig. SM1). For all indicators 
for which a significant trend was identified at the Marton-
vásár site, the same trends were observed across the entire 
region, and those were significant for a considerable propor-
tion of the area: 100%, 64.1%, and 90.8% in case of Tmean, 
nrHotD, and VPD, respectively. In light of this, it can be 
reasonably concluded that the climatic changes responsible 
for the observed effects at Martonvásár are likely to have a 
similar impact in the whole region under study. The sub-
sequent modelling results serve to corroborate this conclu-
sion (see Section 3.6). There were no significant changes 
in the amount or distribution of precipitation for the whole 
year or for shorter periods within the year. Heat stress and 
atmospheric drought appear to be responsible for the adverse 
changes in yield levels.

The correlation coefficient between the local (Marton-
vásár) and the national average yields for the 30-year period 
under study is 0.77 (α = 0.05). This value indicates a strong 
and statistically significant relationship between the yields 
of two different spatial scales. Given the robust correlation 
observed, the yield results of the long-term experiment 
appear to serve as a reliable indicator of yields in the region.

3.2 � Single response surface model

Our main fitted model, obtained after model selection, is 
reported in Table 4. Quadratic terms are significant for fac-
tors N, M, and D, and the regression coefficients are nega-
tive. For time, only linear terms are significant, including the 
interactions M.T and D.T. The presence of these interactions 
means that the optimal sowing dates (D) as well as the opti-
mal maturity class (M) change over time.

Fig. 5   Key characteristics of the 10 climate projections used in the 
study compared to the baseline (2001–2020) period. The 5 GCM-
RCM model combinations that were driven by the RCP4.5 (squares) 
and RCP8.5 (triangles) scenarios were the following: CNRM-ALA-
DIN53; HadGEM2-CCLM; NCC-HIRHAM5; HadGEM2-RAC-
MO22E; MPI-CCLM. Light and dark colors represent the 2041–2060 
and 2081–2100 periods, respectively.



	 K. Pokovai et al.19  Page 10 of 17

3.3 � Time series analysis

The first and most important result of the developed model 
is that it predicts a clear decline in yield levels irrespective 
of the nutrition level, the maturity group and of the planting 
date (Fig. 6). Even with adequate nutrient supply, hybrid 
and planting date selection yield levels of over 10 tons per 
hectare in the early 1990s have fallen well below 9 tons in 
three decades (Fig. SM2). The shape of the iso-lines shows 
that the yield levels of late varieties decline at a much more 
intense rate than that of the early hybrids (Fig. 6b): compare 
the change of around 3 Mg ha−1 for the late varieties (FAO 
> 500) with the practically constant yield levels for the early 
hybrids (FAO < 300), over three decades.

The data analysis resulted in the following temporal 
trends for the optimum nitrogen fertilization level (N), the 

optimum FAO number (M), and for the optimum planting 
date (D).

The optimum level of N fertilization did not change sig-
nificantly over time (Eq. 6). Its value has stagnated at around 
177 and 144 kg ha−1 (Fig. 6a) for early and late sowing, 
respectively (Fig. SM2). This observation simply reflects 
the fact that higher yield productions require more nitrogen 
inputs. It is important to note that this fertilization level cor-
responds with the highest average yield not with the maxi-
mum income. The maximum income-based N fertilization 
optimum is closer to 120 kg ha−1 as above this level the yield 
achieved increases only slightly with increasing fertilizer 
rates (Fig. SM2). For a given planting date, the time invari-
ant optimal level of nutrient supply corresponds with smaller 
and smaller yields.

Regarding variety selection, the optimal FAO number, 
providing the highest possible yield on average, is clearly 
decreasing with time (Fig. 6b, Eq. 7). Before 2000, hybrids 
with FAO number over 450 gave the highest yields, irrespec-
tive of the nutrition level and the planting date (Fig. SM3). 
Today, the medium-early maturity group hybrids (FAO num-
ber less than 400) provide the highest possible yields.

A similar clear trend could be observed in the optimum 
sowing date during the study period (Fig. 6c, Eq. 8). Irre-
spective of hybrid selection the optimum sowing date shifted 
10 days earlier during the 3 decades of the experiment. The 
benefit of earlier sowing dates is also reflected in the level 
of N fertilization resulting in a 4 days of average difference 
between the extensive (60 kg N ha−1 y−1) and the intensive 

(6)Nopt(D) = (12.1831 − 0.0617 ∙ (D − 120))2

(7)Mopt(T) = −2.3932 ∙ (T − 2010) + 415.18

(8)
Dopt(T ,N) = −0.3234 ∙ (T − 2010) − 0.6453 ∙ N0.5 + 113.13

Table 4   Selected single response surface regression model for yield 
(Mg ha−1) with parameter estimates, standard errors and t-tests. The 
terms N, D, M, and T represent quantitative variables fertilizer dose, 
planting day, FAO classification, and time trend.

The terms N, D, M, and T represent the square root of fertilizer dose 
(kg ha−1), planting time (DOY), FAO number and time trend. D, M, 
and T were centered at 120, 350, and 2010, respectively

Effect§ Estimate Standard error t-value p-value

Intercept 6031.13 446.14 13.52 <0.0001
N 435.61 38.1982 11.40 <0.0001
N.N −17.8776 2.4380 −7.33 <0.0001
D −23.4818 5.6154 −4.18 <0.0001
D.D −1.7090 0.3883 −4.40 <0.0001
M 8.8217 3.7738 2.34 0.0194
M.M −0.06767 0.02784 −2.43 0.0151
T −47.0981 40.8646 −1.15 0.2491
N.D −2.2058 0.2406 −9.17 <0.0001
D.T −1.1054 0.5460 −2.02 0.0429
M.T −0.3239 0.1420 −2.28 0.0226

Fig. 6   Contour plots of the model results describing temporal changes in the effect of the investigated factors. a Planting date = 102 and FAO 
number = 500; b Planting date = 102 and N amount = 180 kg ha−1y−1; c FAO number = 500 and N amount = 180 kg ha−1 y−1.
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(180 kg N ha−1 y−1) nutrition regimes (Fig. SM4). Earlier 
sowing obviously entails a higher yield potential and thus 
higher N application is required to realize that potential.

3.4 � Analysis of inter‑annual differences

Regardless of the year type (good or bad) and the fertili-
zation level, hybrids of the same maturity group produce 
the maximum yield. Hybrids with around 420 FAO number 
comprise the optimal maturity group (Fig. SM5). Impor-
tant to note, that this is an average for the 30 years. As it 
was shown earlier that the FAO number of hybrids with the 
highest yields clearly decreased over the observation period.

In bad years, the optimal planting date is more than two 
weeks earlier than in the high-yielding years (Fig. SM5). 
The difference is more pronounced in stands fertilized inten-
sively (DOY = 82 vs DOY = 108) than in stands fertilized 
extensively (DOY = 89 vs DOY = 111). The optimal sow-
ing date does not depend at all on variety selection. There 
is a month difference between the earliest optimum plant-
ing date, corresponding to intensively fertilized hybrids in 
bad years, and the latest planting date optimum (extensively 
fertilized hybrids in good years). The flatness of the iso-
lines in the direction of the planting date axis in sub-optimal 
years shows that the further away we are from choosing the 
right hybrid (Fig. SM5), the less important the sowing time. 
According to the contour plots the planting date-related 
results could be summarized as follows: (1) the worse the 
year the earlier the optimum planting date (Fig. SM5); (2) 
the earlier the planting date the higher the optimum N fer-
tilization level as more fertilizer is needed to achieve the 
expected higher yields (Fig. SM6); (3) the higher the N fer-
tilization level the more sensitive the yield level to planting 
date especially in suboptimal years (Fig. SM6).

In bad (under average yield) years, considerably less 
nitrogen is needed for maximum yields. Irrespective of 
hybrid or sowing date selection the adequate level of N fer-
tilization is around 50 kg ha−1 less in sub-optimal years (210 
vs 159 kg ha−1) corresponding to a slightly over 3 Mg ha−1 
yield difference between the two types of years (Fig. SM6).

Traces of climate change were detectable during the three 
decades of the experiment, though no significant trend was 
found regarding precipitation and evapotranspiration-related 
indicators. On the other hand, the frequency of weather 
extremes especially in the flowering period changed consid-
erably in the past 30 years. The number of precipitation days 
shows a clear though not significant declining trend in this 
period. In the first two decades of the experiment, there was 
one year per decade with less than 10 rainy days in the flow-
ering season. In the last decade, there were six such years. 
The number of hot days more than doubled during 30 years. 
As the technological level of cultivation has not changed 
during the study period, and the yield potential of the new 

varieties is certainly no worse than before, climate change is 
most likely the main cause of the observed changes. Mainly 
due to the increased heat stress coupled with considerable 
atmospheric drought around anthesis the expectable yield 
levels have decreased by more than 21%. Similar results have 
been reported in previous national (Fodor et al. 2014) and 
international (Webber et al. 2018) crop modelling studies.

The two models presented in this paper fit linear terms for 
time trends. In order to explore the effect of environmental 
factors, we additionally used annual and monthly meteoro-
logical data as covariates in the final single response surface 
model. A total of 58 models adding one of the 58 covariates 
were fitted. The added covariate was not significant in most 
of the cases. In case of significance, the year variance was 
reduced up to 40% or increased up to 4%. Furthermore, time 
trend was increased or decreased by up to no more than 
10%. No changes on other regression coefficients including 
time-by-FAO classification interactions were found (results 
not shown). Note that covariate values vary between years 
only, but not between plots. Thus, it is to be expected that 
their inclusion in the model can only affect time trend but 
no effect of other factors varied in the experiment. Further 
note that these additional analyses do not provide any causal 
inference, as the environmental covariate data is purely 
observational.

According to Shim et al. (2017) the decrease in kernel 
number accounted for a much greater contribution to the 
yield reductions due to temperature elevation than did the 
decrease in individual kernel weight in maize cultivars. Par-
tial pollination caused by heat stress seems to be the actual 
cause of yield reductions that cannot be mitigated with 
higher nitrogen fertilization doses. Increasing fertilization 
doses above a certain level won’t result in higher yields and 
certainly will not realize higher revenues. The stagnating 
nitrogen fertilization optimums coupled with the decreasing 
yield levels mean gradually increasing production costs. The 
fact that the same optimum N fertilization level is sufficient 
to achieve lower and lower yields calls into question the 
view that intensification could promote sustainable develop-
ment in this climatic region.

Medium-early hybrids are less affected by the environ-
mental changes than the late hybrids because their flowering 
phase overlaps much less with the critical, stressful period. 
Three decades ago, late varieties yielded 15% more than 
medium-early varieties, but nowadays medium-early varie-
ties yield nearly 10% more.

Depending on external (abiotic stress status) and internal 
(maturity group) factors the planting date optima may differ 
by a month across the years. Even on average, the optimal 
planting date has now shifted into the first decade of April in 
accordance with other studies (Marcinkowski and Piniewski 
2018; Yasin et al. 2022). As the likelihood of unfavorable 
years is expected to increase in the future, earlier planting, 
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even before 1st of April, may become an effective mitiga-
tion option. Since the likelihood of extreme weather events 
is also expected to increase with climate change there is 
still the question of whether the simple “early sowing” as 
a mitigation option will be feasible at all, despite the late 
frosts that may occur. The chance of late frosts (days with 
Tmin < 0 °C) in the 03.21–04.10 period is currently around 
10% at the study area. According to 10 available climate 
projections for the region (Kern et al. 2024), toward the end 
of the century, this likelihood is estimated to decrease down 
to 3.6 and 1.0%, whether RCP4.5 or RCP8.5 scenarios are 
considered, respectively.

3.5 � Impact assessment of fertilization on soil 
quality

No significant difference (at α = 0.05) could be observed 
between the SOC content in 1989 and the SOC content of 
the different fertilization treatments in 2018, based on a 
Mann-Whitney U-test and a Permutation test (Good 2005). 
It seems that incorporating more byproducts into the soil, 
despite the removal of more grain, may help to prevent the 
loss of soil organic matter when more biomass is produced 
with improved nutrition. The SOC content was not signifi-
cantly affected by nitrogen doses at any depth, suggesting 
that no long-term effect of fertilization on soil quality was 
observed. The effect of changes in soil quality over the study 
period on the results appears to be negligible.

3.6 � Crop modelling results

Performance of the calibrated Biome-BGCMuSo model in 
simulating maize yield is demonstrated in Fig. 7. After cali-
brating the selected plant-specific parameters, the model was 
capable of estimating the observed values with a comparable 

efficiency reported in similar studies (Bao et al. 2017; Sándor 
et al. 2017; Soufizadeh et al. 2018; Diancoumba et al. 2024). 
Figure 7 also conveys an important message: The Biome-
BGCMuSo model cannot accurately calculate county-level 
yields from year to year, but it can simulate average yields 
over longer periods with reasonable accuracy at NUTS-3 
level. For the purpose of this study, this latter capability of 
the model is sufficient, as we only want to predict the trend 
of changes in average yields over longer periods.

Mainly due to the mid-summer heat waves and the 
droughty Augusts that are becoming more and more fre-
quent, maize yields are projected to decline significantly 
towards the end of the century (Fig. 8). In particular, 
regions with above-average yields, immediately west of 
the Danube and in the south-west, are expected to suffer 
significant yield losses of more than 25%. These results are 
in good agreement with previous modelling studies show-
ing that, without mitigation strategies (BAU management), 
climate change is expected to have negative impacts on 
maize in the Carpathian basin (Webber et al. 2018). How-
ever, earlier sowing, an easy and inexpensive change in 
management (Minoli et al. 2022), can reduce yield losses 
to below 15% in almost the whole study area. In the wetter 
areas of the region, western and north-eastern Hungary, 
this mitigation option can even fully offset the negative 
impacts of climate change (Fig. 8).

Despite decades of development of process-based crop 
and terrestrial ecosystem models, the accurate simulation 
of interannual variability remains an unresolved challenge 
(Ostberg et al. 2018; Leng and Hall 2020; Lin et al. 2023). 
Though underestimation of year-to-year yield variability 
represents a significant challenge to the utilization of these 
models for short-term decision-making, the statistical 
model, based on observations, and the process-based sim-
ulation model, demonstrate consistent long-term trends.

Fig. 7   a Observed and simulated yields before (red circles) and after 
(blue circles) calibration using site-specific weather and soil data 
from Martonvásár (1992–2021), Hungary; b Observed and simulated 
yields of model validation using NUTS-3 level observed data from 
Hungary consisting 19 NUTS-3 regions: annual values (red squares) 
and values aggregated for the 2001–2020 period (blue squares). 

Dotted line represents the “1:1 line”. Model performance indicators 
before vs after calibration: CCC = 0.376 vs 0.788, MSE = −1.98 vs 
−0.25 Mg ha−1, MAE = 2.20 vs 1.08 Mg ha−1. Performance indi-
cators of model validation for annual vs aggregated values: CCC = 
0.595 vs 0.887, MSE = −0.13 vs 0.11 Mg ha−1, MAE = 1.22 vs 0.33 
Mg ha−1.



Climate change‑related lessons learned from a long‑term field experiment with maize﻿	 Page 13 of 17  19

3.7 � Cost‑benefit analysis of the possible mitigation 
options

Sowing earlier does not affect most production cost elements: 
soil preparation, seed, crop protection, machinery, and labor 
costs do not change because the sowing time changes. The 
higher N fertilizer rates required for higher yields due to the 
earlier optimal planting date mean more fertilizer use and 
therefore higher costs only in relative terms. In absolute terms, 
the amount of N fertilizer needed to achieve maximum yields 
does not change over time (Fig. 6a), so this cost element does 
not change with earlier planting. Our observations show a 
negative correlation between earlier planting and grain mois-
ture content at harvest, so if the harvest date does not change, 
earlier planting will reduce drying costs. If the harvest date is 
also moved forward, the reduction in drying costs may not be 
realized, but a positive effect on crop rotation is more likely: 
With the additional time before the next (fall) crop is sown, 
nutrient release from the soil can be enhanced. Cover crops 
can help retain more nitrogen in the root zone. Tillage timing 
can also be better optimized, reducing the risk of forced soil 
management.

In conclusion, bringing the sowing date earlier is not 
expected to have a negative impact on costs. Consequently, 
it will also be a positive option for profit because of the 
increasing associated yields.

The selection of earlier maturing cultivars is a viable 
option, as is the strategic adjustment of the sowing date. 
The cost of production for these hybrids is not higher than 
that of the later maturing hybrids. In fact, the cost is often 
lower due to the lower cost of seed for early varieties in the 
region. However, this advantage is expected to disappear in 
the future if the market (the seed companies) also realizes 
that with climate change, the competitive advantage of late 
hybrids is a thing of the past.

The Carpathian Basin is a significant producer of maize, 
accounting for approximately 25% of the EU’s total maize 
production. The region’s climate is expected to be affected 
by a number of impacts due to climate change that will 
adversely affect maize production. The mitigation strate-
gies examined have clear economic benefits for the region 
and do not require difficult preparatory steps to implement. 
Other studies also show that the changes in agricultural 
management that we have studied could be beneficial in 
other regions as well (He et al. 2021; Kafaie Ghaeini et al. 
2023). The necessity of detailed local studies concentrating 
on smaller regions is evident, as the efficacy of a given miti-
gation option is not uniform across all areas. For instance, 
research indicates that in other locations later-maturing 
maize hybrids may potentially offer higher yields under 
future climate conditions compared to earlier-maturing ones 
(Markos et al. 2023).

3.8 � Limitations of the study

While the research offers valuable insights, it is important 
to note that it is not without its limitations. A key limitation 
of the study is the reliance on a single-site observation. A 
substantial amount of data was collected over a considerable 
(30-year long) period. The reliability of the trends identified 
can be statistically validated. The statistical model employed 
assumes a quadratic response with respect to the primary input 
variables, and the goodness of fit was satisfactory based on 
the lack of fit tests we conducted (Table SM1). Other nonlin-
ear regression approaches could have been explored, includ-
ing P-splines, but these would come at the cost of somewhat 
increased complexity. The quadratic model is a satisfactory 
compromise between explanatory power and complexity.

The Pannonian region was purposefully selected due to 
its climatic homogeneity, which renders it of significant 

Fig. 8   Changes of average maize yields in Hungary: 2081–2100 
period compared to the baseline (2001–2020) period. a According to 
unchanged sowing time (BAU) simulations; b according to 3 weeks 
earlier planting time (3WEP) simulations. The embedded map in the 

bottom-right corner shows the size and position of Hungary within 
Europe. Grid cells where the proportion of arable lands is less than 
20% are masked in grey.



	 K. Pokovai et al.19  Page 14 of 17

importance with respect to European maize production. 
Despite occupying a mere 3% of the EU’s total territory, 
this region is responsible for around 25% of the EU’s maize 
production. In the development of the statistical model, it 
would have been advantageous to utilize the findings from 
other long-term experiments; however, no stations in this 
region were identified in the BONARES - European agri-
cultural long-term experiments database (Donmez et al. 
2022) that had examined the effects of Variety × Fertiliza-
tion × Planting date analogous to the Martonvásár complex 
experiment. In light of the substantial correlation that was 
observed, it can be concluded that the yield results of the 
long-term experiment serve as a reliable indicator of yields 
in the region. Similar to other studies (e.g., Pasquel et al. 
2022) site-specific results were spatially extended using a 
process-based crop model. The crop model confirmed the 
results of the statistical model (cf. Fig. 6c and Fig. 8).

Another key limitation of the study is that the crop 
model simulations were carried out only for Hungary. 
The country is situated in the central portion of the study 
region, encompassing approximately 45% of the Carpathian 
Basin. A substantial part of the basin is situated within the 
borders of Romania, with these two nations collectively 
encompassing nearly 90% of the total area. According to 
the observations made during the period under study, there 
is a strong, statistically significant positive correlation (r = 
0.72) between the yields of the Hungarian and Romanian 
areas. This allows us to state with great confidence that the 
modelled trends obtained for the Hungarian areas are valid 
for the whole Pannonian basin. The rationale behind con-
ducting the modeling exclusively for Hungary pertains to 
the availability of reliable and high-resolution climate and 
soil databases, which are only accessible for this specific 
region. It is important to note that the Biome-BGCMuSo 
model used in this study has demonstrated remarkable 
efficacy in numerous international intercomparison stud-
ies (Kimball et al. 2023, 2024).

4 � Conclusion

This study aimed to analyze a 30-year period of a multi-fac-
torial long-term experiment, with the goal of detecting traces 
of climate change in yield trends and identifying favorable 
combinations of agro-management factors that could serve 
as effective adaptation options for the future. We may con-
clude that late hybrids seem to have no perspective in the 
Pannonian climatic zone. Early sowing, shifting the planting 
date even into the last decade of March, will come with only 
a marginal chance of losing crop due to frost damages when 
approaching the end of the century.

Sub-optimal environmental conditions may greatly 
change the effect of certain agro-management factors. 

In bad years the differences in hybrid selection or in the 
level of nitrogen fertilization may result in a much greater 
impact on the yield than in good years (Fig. SM4-5). When 
planning nitrogen fertilization levels, the planned plant-
ing date also should be taken into account as it clearly 
influences the fertilizations level optimum. Additionally, 
fertilization recommendations could be adjusted after a 
bad year to account for the considerable amount of nutri-
ents that was not taken up, taking into account the possi-
ble immobilization. The harmonization of planting date, 
fertilization level and variety selection for obtaining the 
achievable yield is crucial especially in bad years. Gener-
ally speaking, the determination of the optimum of any of 
the investigated factors is only possible if the other two 
are taken into account. This principle should be taken 
into account in the next generation of plant production 
related advisory systems. This is the first comprehensive 
study that combines long-term historic weather data, 
high-resolution soil data, climate projection data as well 
as statistical and crop simulation modelling tools in order 
to provide reliable mitigation strategies for farmers and 
policy makers. Research indicates that while farmers may 
be aware of climate change, there is often a discrepancy 
between perception and the implementation of adaptation 
strategies. This discrepancy can be attributed to a strong 
attachment to traditional farming practices and skepticism 
towards new methods (Amadou et al. 2022; Yazdanpanah 
et al. 2023). Therefore, effective knowledge transfer is 
essential to encourage farmers to adopt new practices. The 
implementation of these anticipated beneficial measures 
(earlier planting, planting of early hybrids) is expected to 
enhance the region’s competitiveness and export capacity, 
ensuring their sustainability in the future.

It is hypothesized that a longer time series will not yield 
significantly different results; a 30-year period is sufficient 
to establish trends. However, the reliability of extending the 
conclusions spatially can be further increased by including 
more detailed soil and crop management data for areas of the 
Carpathian Basin outside Hungary. The study can be further 
elaborated by analyzing the spatial heterogeneity of the results 
and showing how and why sub-regions differ from each other.
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