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Warming accelerates global drought severity

Solomon H. Gebrechorkos1,2 ✉, Justin Sheffield2, Sergio M. Vicente-Serrano3, Chris Funk4, 

Diego G. Miralles5, Jian Peng6,7, Ellen Dyer1, Joshua Talib8, Hylke E. Beck9, Michael B. Singer10,11,12 

& Simon J. Dadson1,8

Drought is one of the most common and complex natural hazards afecting the 

environment, economies and populations globally134. However, there are signifcant 

uncertainties in global drought trends436, and a limited understanding of the extent  

to which a key driver, atmospheric evaporative demand (AED), impacts the recent 

evolution of the magnitude, frequency, duration and areal extent of droughts. Here, 

by developing an ensemble of high-resolution global drought datasets for 190132022, 

we fnd an increasing trend in drought severity worldwide. Our fndings suggest that 

AED has increased drought severity by an average of 40% globally. Not only are 

typically dry regions becoming drier but also wet areas are experiencing drying 

trends. During the past 5)years (201832022), the areas in drought have expanded  

by 74% on average compared with 198132017, with AED contributing to 58% of this 

increase. The year 2022 was record-breaking, with 30% of the global land area afected 

by moderate and extreme droughts, 42% of which was attributed to increased AED. 

Our fndings indicate that AED has an increasingly important role in driving severe 

droughts and that this tendency will likely continue under future warming scenarios.

Water availability has a critical role in shaping ecosystems, economic 

activities and human livelihoods. Water is an essential resource for 

agriculture, energy, industry and domestic use, influencing the overall 

sustainability and development of societies7,8. Droughts are also detri-

mental for vegetation, reducing the carbon uptake of ecosystems, caus-

ing widespread plant mortality9311 and leading to significant disruptions 

in ecosystem functioning and biodiversity loss12. They also negatively 

affect the productivity of annual and perennial crops, exacerbating 

food insecurity and economic instability11. With climate change, there is 

an expectation that droughts will be more frequent and intense13, with 

increased impacts on agricultural, environmental and hydrological 

systems14,15. Observational evidence indicates an increase in hydro-

logical and agricultural drought severity in several regions over recent 

decades, owing to the widespread increase in atmospheric evaporative 

demand (AED) as well as regional declines in precipitation16,17. Future 

projections from climate models also suggest a heightened severity 

of droughts in some regions owing to decreases in precipitation and 

enhanced AED18.

Although numerous studies have focused on estimating drought 

trends and their drivers at the global scale, they have been limited by 

the quality of available global data3,4,17,19, which adds uncertainties in 

the assessment of these trends. Crucially, the extent of the effect of 

increased AED on drought severity as a consequence of global warm-

ing remains inadequately explored20. AED intensifies water deficits by 

enhancing evaporation11, particularly under low-soil-moisture condi-

tions. Moreover, land3atmosphere interactions can lead to positive 

feedback whereby drying soils and plants decrease latent heat fluxes, 

leading to increases in temperature and AED, and further increasing 

drought severity13,21. Although drought can be characterized in many 

ways to reflect different meteorological, hydrological and ecological 

drivers, consideration of the influence of AED with respect to precipi-

tation is crucial to understand how climate change is impacting on 

changes in drought. Some studies have suggested that AED-based 

drought metrics may overestimate severity compared with hydrological 

and ecological indicators22. However, this mainly stems from uncertain-

ties in Earth system model projections and the physiological effects of 

atmospheric carbon dioxide on evaporation17,23. Methodological chal-

lenges also affect comparisons between drought metrics, but applying 

consistent statistical approaches shows stronger agreement between 

AED-inclusive indices24. Increasing evidence highlights the role of AED 

in amplifying ecological drought severity through evaporation25. Given 

the recent rise and projected increase of AED owing to anthropogenic 

warming17,18, assessing its contribution to drought severity is essential 

for adaptation planning.

Nevertheless, previous studies have highlighted significant uncer-

tainties in global-scale drought assessments and in the determination 

of the role of AED on drought severity, largely owing to the choice of 

models for AED and meteorological forcing dataset3,4,20,26. Thus, in previ-

ous studies, the selection of methods and datasets have resulted in con-

flicting results in global drought patterns4,5,20, highlighting the need for 

further research to reduce uncertainties induced by varying methods 

and forcing datasets. For example, simpler temperature-based methods 

overestimate AED in humid regions, whereas more comprehensive 

models such as Penman3Monteith, which consider both radiative and 

thermodynamic terms, offer more accurate results across different 

climates and seasons27,28. Also, reliable and accurate observations of 
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precipitation are crucial for realistic drought quantification. Over the 

past few decades, numerous precipitation datasets have been devel-

oped based on gauge, reanalysis and satellite data. Nevertheless, dif-

ferences in annual mean global precipitation between datasets can be 

up to 300)mm)yr21 and the error can reach up to 100)mm per month 

when compared with gauge observations29,30. Finally, it is necessary 

to mention that drought assessments depend on the selected index 

and calculation methodology. For example, selecting a calibration 

period for drought index models such as the Palmer Drought Severity 

Index can significantly influence global drought trend interpretation, 

amplifying extreme drought areas by up to 15% (ref. 28). Overall, uncer-

tainties in datasets, methods and model structure introduce substantial 

uncertainty in assessing drought and its trends, as highlighted in the 

Sixth Assessment Report of the Intergovernmental Panel on Climate 

Change13,20.

Here, given the existing critical priority of reducing uncertainties in 

the quantification of recent trends in drought severity, we used the most 

accurate global precipitation datasets29,30 and computed AED using 

the comprehensive Penman3Monteith method. For our drought index 

model, we applied the Standardized Precipitation Evapotranspiration 

Index (SPEI)31, which balances complexity and utility by effectively 

representing the supply3demand dynamics of drought through the 

difference between precipitation and AED, allowing spatial and tem-

poral comparability and quantification of the sensitivity of the index to 

variations of AED in different world regions and climate conditions32. 

Moreover, the SPEI method generates estimates of drought variability 

across multiple timescales (1348)months) without requiring a calibra-

tion period, which allows an objective assessment of the recent trends 

in drought severity and quantification of the influence of increased AED. 

Numerous studies have analysed drought trends at the regional and 

national scales using SPEI, demonstrating its ability to identify drought 

trends linked to anthropogenic forcing33,34. Although some studies have 

explored drought projections using SPEI35,36, only a few have exam-

ined global-scale trends, indicating an increase in drought severity 

associated with global warming37. Other global studies have assessed 

drought trends using SPEI with observational data but did not evaluate 

the influence of AED on drought severity or address uncertainties in 

precipitation and AED datasets4critical limitations for drawing robust 

conclusions17,38,39. Only one study2 has examined the role of anthropo-

genic climate change on drought severity using Coupled Model Inter-

comparison Project Phase 6 simulations, but it introduces significant 

uncertainties owing to the limitations of model-based approaches. 

Although SPEI has been widely used to assess drought trends, this study 

quantifies, at the global scale and based on observations, the role of 

increasing AED in drought severity. In addition, it evaluates uncertain-

ties in global datasets, offering a more comprehensive perspective on 

this critical issue.

Global drought trends

We developed 4 global, high-resolution (0.05°) SPEI datasets for 

198132022 using precipitation from Climate Hazards Group Infra-

red Precipitation with Station Data (CHIRPS)40 or Multi-Source 

Weighted-Ensemble Precipitation (MSWEP)41, combined with AED 

from the Global Land Evaporation Amsterdam Model version 4.2a 

(GLEAM)42 or hourly potential evapotranspiration (hPET)43. Although 

both precipitation products perform well29,30, the inputs and methods 

used to produce CHIRPS and MSWEP are quite different. Similarly, 

the widely used GLEAM and hPET AED datasets rely primarily on sat-

ellite and reanalysis data sources. Hence using combinations of all 

four builds a robust foundation for assessing trends. To assess global 

trends before the 1980s, we also developed two additional SPEI datasets 

based on ERA5-Land reanalysis (the fifth-generation reanalysis from 

the European Centre for Medium-Range Weather Forecasts, ERA5; 

about 25)km) and the Climatic Research Unit Time-Series (CRU-TS; 

about 50)km), covering 195032022 and 190132022, respectively. By 

incorporating multiple datasets and different periods, we aim to 

capture a broader range of potential uncertainties in the forcing data 

and provide a more comprehensive assessment of drought patterns. 

Through using climatological AED and precipitation, we developed 

equivalent datasets that enable us to quantify the contributions of AED 

and precipitation changes to the SPEI trend, as well as to the frequency, 

duration and magnitude of drought events. Here we focus on the 

6-month SPEI, as it captures prevalent short- to medium-term drought  

conditions.

On the basis of the mean of the four high-resolution SPEI datasets 

(HRSPEI) datasets, the quasi-global average (50°)S to 50°)N) 6-month SPEI 

shows a decreasing trend, indicating drying conditions during the period 

198132022 (Fig. 1). The 6-month HRSPEI shows a significant (P)<)0.05) 

decreasing trend of 20.0055)±)0.002)yr21 (Fig. 1a). The quasi-global area 

in drought (SPEI)<)21) shows a commensurate significant increasing 

trend of 0.36)±)0.03%)yr21 (Fig. 1b). For severe (SPEI)<)21.4) and extreme 

(SPEI)<)21.8) droughts, the area in drought shows a significant increas-

ing trend of 0.17)±)0.02%)yr21 and 0.047)±)0.022%)yr21, respectively.  

On the basis of CRU-TS and ERA5, the period from 1950 to 1980 shows 

significant increasing trends in 6-month SPEI of 0.00120)z-units)yr31 and 

0.012)z-units)yr31, respectively. A summary of the 6-month SPEI trend is 

provided in Extended Data Fig. 1f.

Spatially, the 6-month HRSPEI shows a drying trend across large 

parts of the world such as in Europe, Africa, western North America 

and South America during 198132022 (Fig. 1c), with a drying trend of 

up to 20.08)z-units)yr21. Conversely, regions such as South and South-

east Asia, the Guyanas in South America, central Southern Africa and 

eastern North America show an increasing wetting trend over the same 

period. The trends for individual datasets that constitute the HRSPEI 

and CRU-TS and ERA5 datasets are provided in Extended Data Figs. 1 

and  2, respectively.

The trend in magnitude and frequency of droughts has increased 

in different parts of the world during 198132022 (Fig. 2). The drought 

magnitude (Fig. 2a) and frequency (Fig. 2b) show significant decreasing 

and increasing trends in various regions, particularly in the southern 

parts of South America, eastern and central Africa, southern Europe 

and the western United States. Compared with much of the world, parts 

of Africa and South America show a greater increase and decrease in 

drought frequency and magnitude, respectively, highlighting that 

these trends are primarily driven by precipitation deficits. In contrast, 

changes in drought duration are statistically significant only in scat-

tered areas, arguing against a widespread change in drought duration 

(Extended Data Fig. 3).

Of note is the acceleration in the decrease in SPEI and increase in areas 

experiencing drought during the past 5)years, with 2022 recording the 

highest percentage of impacted areas (Extended Data Fig. 4). During 

this period, the global extent of severe and extreme drought increased 

threefold and fivefold, respectively, compared with 198132022. In 

Europe, 82% of land experienced drought, with 50% under moderate 

to severe drought (Fig. 1d). In 2022, annual precipitation across Europe 

dropped by up to 35% below the 198132022 average, and AED increased 

by up to 40% (Extended Data Fig. 5).

Drivers of changes in drought

To assess how changes in AED and precipitation affect drought, we 

compare SPEI trends calculated from observed AED and precipitation 

variations with those based on climatological means of AED (AEDclm) 

and precipitation (Prclm). The quasi-global average 6-month SPEI trend, 

based on observed precipitation and AEDclm, is 0.002)z-units)yr21, which 

is about 131% higher than the observed trend (Fig. 3), indicating that 

holding AED to its climatological value results in a positive trend. When 

using observed AED and Prclm, the SPEI trend is 20.02)z-units)yr21, which 

is 300% more negative than the observed trend (Fig. 3a). Similarly, the 
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trend in areas in drought based on the observed precipitation and AED-

clm is 20.004%)yr21, which is 96% lower than the observed trend. These 

findings indicate that AED changes from 1981 to 2022 intensified both 

the downwards trend in SPEI and the expansion of drought-affected 

areas. The time series based on Prclm shows an evolution from positive 

SPEI values at the beginning of the study period to negative in recent 

years (Fig. 3a). This pattern is also observed with the SPEI values based 

on ERA5 (Extended Data Fig. 6), highlighting the increased impact of 

AED as precipitation remains fixed at its climatological value.

Regionally, the results indicate a notable contribution of AED to 

the negative SPEI trend (up to 20.06)yr21) in large parts of Europe 

(excluding Norway and Sweden), Asia, Australia, the western United 

States and southern parts of South America (Fig. 3b). In addition, in 

parts of East and South Africa, changes in AED have exacerbated the 

negative SPEI trend by up to 20.04)z-units)yr21. In contrast, AED has 

minimal or no effect on drought trends in North America (Canada, 

Midwest and Southeast United States), northern South America (Ama-

zon River Basin) and Central Africa. However, AED appears to have 

increased the SPEI trend (up to +0.02)z-units)yr21) in South (India) and  

Southeast Asia. This change can be attributed to the observed increas-

ing trend in precipitation and decreasing trend in AED (Extended Data 

Fig. 7). When using Prclm, the 6-month SPEI shows a significantly more 

negative trend (up to 30.1)z-units)yr21) compared with the observed 

trend globally, except in South and Southeast Asia (Fig. 3c). The trend 

based on ERA5 datasets also shows a similar change during 198132022 

(Extended Data Fig. 6).

Observed changes in AED have also intensified the magnitude and fre-

quency of droughts globally (Fig. 2). Compared with AEDclm, observed 

trends show a more negative drought magnitude (up to 20.2)z-units)yr21) 

and a more positive frequency trend (up to +0.16)months)yr21). Regional 

averages reveal that drought magnitude, based on observed AED, shows 

a significant decreasing trend between 20.1)yr21 and 20.05)yr21, whereas 

the trend is not statistically significant with AEDclm in South and North 

America, Africa, Europe, and Australia (Fig. 2g3r). Drought frequency 

shows a significant increasing trend between 0.02)months)yr21 and 

0.07)months)yr21 with observed AED, whereas the trend is very low 

and not significant using AEDclm. In Asia, AEDclm shows a significant 

increase in drought magnitude (0.03)z-units)yr21) and a decrease in 
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Fig. 1 | Monthly SPEI, percentage of area in drought and maps of SPEI trends 

and the 2022 drought. a,b, The quasi-global (50°)S to 50°)N) average HRSPEI (a) 

and global percentage of area in droughts (b). c, The trend in 6-month HRSPEI 

for 198132022 (z-units)yr21), with non-significant trends (P)>)0.05) marked in grey 

for visualization. d, The 6-month HRSPEI values for the record-breaking drought 

in August 2022 (z-units). The time series uses HRSPEI (0.05°), CRU-TS (0.5°)  

and ERA5 (0.25°), with HRSPEI being the ensemble mean of MSWEP_hPET, 

MSWEP_GLEAM, CHIRPS_hPET and CHIRPS_GLEAM (198132022). CRU-TS covers 

190132022 and ERA5 spans 195032022. The time series are averaged over tropical 

and subtropical land areas (50°)S to 50°)N), excluding regions with average 

annual rainfall below 180)mm. For regions above 50°)N, the spatial trend is based 

on the mean of MSWEP_hPET and MSWEP_GLEAM, as CHIRPS is available up to 

50°)N. The vertical lines indicate the period from 1950 to 1980, showing higher 

positive SPEI values based on ERA5 and CRU-TS compared with 198132022.
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Fig. 2 | Trends in drought magnitude and frequency for 6-month SPEI during 

1981–2022. a,b, The trend in magnitude (z-units)yr21; a) and frequency 

(months)yr21; b) of droughts (SPEI)<)21) for the period 198132022 based on 

observed precipitation and AED (8Observed9). c,d, The trend in magnitude (c) 

and frequency (d) based on observed precipitation and AEDclm (8AEDclm9).  

e,f, The difference in trend between observed precipitation and AEDclm for 

drought magnitude (e) and frequency (f). The SPEI is based on MSWEP_hPET.  

The trend and regional average exclude dry land areas with average annual 

rainfall below 180)mm. Non-significant trends (P)>)0.05) are marked in grey to 

enhance clarity. Magnitude is calculated as the cumulative sum of SPEI)<)21 

values during a drought event for each year and frequency represents the number 

of events in a year with SPEI)<)21. g3r, The average magnitude (units)yr21; g3i) and 

frequency (months)yr21; m3r) of droughts averaged over South America (g,m), 

Africa (h,n), Australia (i,o), Europe ( j,p), Asia (k,q) and North America (l,r).
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frequency (20.02)months)yr21). In contrast, observed AED indicates a 

decrease in magnitude (20.03)z-units)yr21) and an increase in frequency 

(0.02)months)yr21).

Overall, even though precipitation accounts for 60% of the global 

average SPEI trend during 198132022, the role of AED, contributing 40%, 

is substantial (Fig. 4). This is especially notable considering the stronger 

sensitivity of SPEI to precipitation than to AED in most land regions32. 

In Africa, Australia, and the drylands of North and South America, the 

influence of AED is particularly pronounced, contributing up to 65% to 

drought trends during 198132022. Specifically, AED accounts for 44% 

of the drought trend in Africa and 51% in Australia, playing a significant 

role in intensifying drought severity in these regions. In contrast, the 

contribution of AED to drought trends in North and South America, 

Europe, and Asia is around 30%.

Acceleration of droughts

The area affected by drought has expanded significantly, particularly 

during the past 5)years (Extended Data Fig. 4). Globally, during the 

past 5)years (201832022), the observed area in drought was on aver-

age 27%, which is 74% higher than during 198132017 and 58% higher 

compared with AEDclm for 201832022. Regionally, drought-affected 

areas increased by 119% in Australia, 163% in southern South America, 

and 141% in the western United States in 201832022 compared with 
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observations (observed precipitation and AED) and SPEI based on observed 

precipitation and climatology of AED (AEDclm). c, The trend difference between 

SPEI based on observations and SPEI based on observed AED and climatology of 
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below 180)mm. For regions above 50°)N, the trend is based on the mean of 

MSWEP_hPET and MSWEP_GLEAM, as CHIRPS is available up to 50°)N.
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198132017 (Extended Data Fig. 8). Similarly, in the past 5)years, drought 

areas increased by 75%, 80% and 56% in East Africa, Northern Asia and 

Europe, respectively. In contrast, when using AEDclm, the increases 

were substantially lower in Australia (36%), southern South America 

(62%), western United States (58%) and Northern Asia (0.5%), whereas 

Europe and East Africa experienced a decrease of about 8%. A summary 

of these changes is provided in Extended Data Fig. 8h.

Drought severity in 2022 was record-breaking relative to the 19813

2022 period (Extended Data Fig. 8). The year 2022 had the highest 

drought area (30%), which is 42% higher than AEDclm. As shown in 

Fig. 1d, the 6-month SPEI for August 2022 indicates moderate to extreme 

droughts across Europe, East Africa, western United States and south-

ern South America, with drought-affected areas approximately 34367% 

greater than AEDclm. In addition, the average SPEI was 20.85)units)yr21, 

compared with 0.52)units)yr21 based on AEDclm. Overall, owing to the 

observed increase in AED, the trends in SPEI and areas in drought dur-

ing 198132022 indicate that not only are drier regions becoming drier 

but also wet areas are experiencing drying trends.

Discussion

According to the SPEI, over the past 42)years (198132022), global 

drought severity has intensified. In the past 5310)years, this trend has 

accelerated as a consequence of the strong increase in AED, which 

is directly related to global warming and an increased vapour pres-

sure deficit18, as the water supply to the atmosphere is not enough to 
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compensate for the large temperature increase. Some recent studies 

have also suggested an increase in the severity of drought events over 

large land areas based on metrics such as modelled soil moisture11 and 

the Palmer Drought Severity Index44,45, all of which are sensitive to 

changes in the AED. Nevertheless, in our study, we have quantified the 

contribution of AED to worsening drought conditions, which has been 

up to 60% in some regions, particularly in Africa, Australia, western 

United States and southern South America. Moreover, changes in AED 

have exacerbated the drying trend globally, particularly in the past dec-

ade. The year 2022 specifically was a record-breaking year for drought 

severity and extent in Europe and East Africa. In Europe, the severity 

of the 2022 drought event can be largely attributed to anthropogenic 

warming, as the anomalies observed in streamflow and soil moisture 

cannot be explained by the precipitation deficit alone, but mostly 

by enhanced AED, which increased water losses by evaporation24,25. 

Moreover, the ecological drought severity recorded in Europe9s natural 

forests cannot be fully explained without considering the influence of 

high temperatures and AED on plant physiology. In the absence of for-

mal attribution studies in other regions of the world that experienced 

drought in 2022, the attribution in Europe and the increase in severity 

globally driven by enhanced AED as shown in this study suggests that 

it is reasonable to conclude that anthropogenic global warming likely 

contributed to exacerbate global drought severity in 2022.

Compared with previous studies analysing recent drought trends 

based on atmospheric drought indices that use AED in calcula-

tions2,17,44,45, this study has isolated the effect of AED on drought severity 

and in addition our study has also reduced uncertainties given the 

use of high-spatial-resolution and multi-source data, which allows 

for a clearer understanding of drought intensification. The observed 

increase in drought severity aligns with associated impacts on agri-

cultural, environmental and hydrological systems, as seen in events 

like the 2022 European drought, which contributed to enhanced tree 

mortality, increased forest fires and long-term soil moisture decline11,46. 

Although the SPEI is an atmospheric drought index that effectively 

captures the effects of precipitation and AED on drought severity, it 

may represent drought-related impacts very effectively47. However, 

further studies are needed, considering variables such as soil moisture, 

vegetation stress and hydrological flows for better understanding 

of the broader impacts of the observed changes on ecosystems and 

human activities17. Moreover, the observed acceleration of drought 

trends in the past few years aligns with future climate projections 

that indicate further increases in drought severity owing to projected 

warming35,48, which warns of the need for better socioeconomic and 

environmental adaptation measures to reduce drought impacts and 

improve global drought.
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Methods

Drought index

The SPEI31 is a widely utilized drought assessment tool that incorporates 

both AED and precipitation to evaluate drought severity across dif-

ferent timescales. SPEI values are computed by subtracting AED from 

precipitation. These differences are standardized using a log-logistic 

probability distribution to ensure consistency across regions, seasons 

and timescales. This distribution model involves three parameters 

(α, β and γ), which are estimated using the L-moment procedure. The 

SPEI indices were calculated using the entire 198132022 period as a 

baseline, ensuring that the full range of variability in the input data 

is captured. Unlike other drought indices, the SPEI does not require a 

predefined baseline or calibration period, as it standardizes the data 

directly from the input time series, ensuring consistency across data-

sets and timescales. The SPEI values provide categories for wet and dry 

events (Extended Data Table 1).

Using SPEI, we developed four high-resolution SPEI indices using a 

combination of two precipitation datasets and two potential evapo-

transpiration (that is, AED) datasets. The precipitation datasets used 

were the MSWEP41 and CHIRPS40 precipitation and the AED datasets 

were GLEAM42 and hPET43. The resulting four indices: MSWEP_GLEAM, 

MSWEP_hPET, CHIRPS_GLEAM and CHIRPS_hPET, were developed at a 

spatial resolution of 0.05° for the period 198132022. The 0.1°-resolution 

datasets were first interpolated to match the resolution of CHIRPS 

using bilinear interpolation. In addition, we developed an ensemble 

mean (HRSPEI) based on all four datasets. For latitudes above 50°)N, 

the mean is derived from MSWEP_GLEAM and MSWEP_hPET, as CHIRPS 

data are available only up to ±50° latitude. AED and AED variability in 

high-latitude areas >50°)N are generally small, and changes in AED, 

even at high percentages, result in low absolute magnitudes, making 

SPEI less sensitive to AED in these regions32.

To assess the contributions of precipitation and AED, we developed 

additional indices based on observed (that is, actual values from hPET 

and GLEAM) AED with monthly climatological precipitation (Prclm), 

and observed (that is, a combination of gauge and satellite and rea-

nalysis data) precipitation with climatological AED (AEDclm) for the 

period 198132022. Using AEDclm and Prclm allows us to quantify the 

impact of precipitation and AED changes and variability on droughts 

over the past 42)years. To further assess changes in drought during 

the early and mid-1990s, we developed two coarse-resolution SPEI 

indices based on ERA5 (0.25°) and CRU-TS (0.5°). The SPEI based on 

ERA5 was computed using monthly precipitation and AED derived from 

ERA5 meteorological datasets using the Penman3Monteith equation 

(equation (1)) for the period 195032022. Similarly, the SPEI based on 

CRU-TS was calculated using monthly precipitation and AED derived 

from CRU-TS meteorological datasets using the Penman3Monteith 

equation (equation (1)) for the period 190132022.

In this study, we use SPEI)<)21 as the threshold to define a drought, 

with values between 21 and 1 considered near-normal conditions and 

values >1 indicating wet conditions (Extended Data Table 1). Using 

SPEI)<)21 values, we assessed key drought metrics: magnitude, duration, 

intensity and frequency. We follow the classic approach and widely 

adopted methods to define these metrics49. Drought magnitude is 

calculated as the cumulative sum (running total) of SPEI)<)21 values 

during a drought event. Drought intensity is defined as the maximum 

negative value of SPEI observed during the event. Duration represents 

the run length of consecutive months with SPEI)<)21, and frequency 

is the total number of drought events within a given period49. Finally, 

severity is used as an overarching term to refer to all aspects of drought: 

intensity, magnitude, duration and extent.

Global climate and AED datasets

The MSWEP (version 2.8) dataset offers global 3-hourly, daily and 

monthly precipitation estimates at a 0.1° spatial resolution from 1979 

to present41. Similarly, the CHIRPS (version 2.0) dataset provides daily, 

decadal and monthly precipitation estimates over land, with a spatial 

resolution of 0.05° for latitudes below 50°, covering the period from 

1981 to present40. Both MSWEP and CHIRPS are high-resolution precipi-

tation datasets developed by integrating ground-station observations, 

satellite data and reanalysis products.

CHIRPS and MSWEP were chosen as they generally outperform 

other similar gridded precipitation datasets when compared with 

ground observations29,30. CHIRPS (0.05°) is particularly designed for 

monitoring droughts and detecting environmental changes, provid-

ing daily precipitation estimates from 1981 to present. It combines 

satellite-derived Climate Hazards Center Infrared Precipitation (CHIRP) 

and the Climate Hazards Group Precipitation Climatology (CHPclim) 

with ground-station data from the Global Historical Climate Net-

work and many other sources. The CHIRPS product benefits from a 

high degree of homogeneity, provided by its simple but consistent 

foundation of geostationary thermal infrared satellite observations. 

CHIRPS also incorporates unique observation inputs from Africa, Latin 

America and Central America. MSWEP (0.1°) has been designed with 

both accuracy and homogeneity in mind, providing 3-hourly precipita-

tion estimates from 1979 to present. It integrates daily observations 

from over 77,000 stations from various national and international 

data sources, satellite estimates from infrared- and microwave-based 

satellite datasets, and reanalysis data, offering accurate global pre-

cipitation data from 1979 to present. Both CHIRPS and MSWEP have 

previously been evaluated globally using statistical metrics such as 

Kling3Gupta efficiency and Nash3Sutcliffe efficiency, as well as vari-

ous bias and error metrics29,30. For instance, MSWEP outperformed 22 

other global precipitation datasets in capturing daily precipitation 

from 76,086 gauging stations and in driving hydrological models across 

9,053 catchments29. In addition, both MSWEP and CHIRPS were found 

to outperform other high-resolution gauge-based datasets in model-

ling daily, monthly and annual streamflow across 1,825 streamflow 

gauges30. However, both datasets remain subject to inherent uncertain-

ties, and, therefore, considering both helps reduce biases and obtain 

more reliable estimates, given that they are somewhat independent. 

For example, they differ in their data sources, with CHIRPS using only 

geostationary thermal infrared observations, whereas MSWEP also 

uses microwave observations, and they use different sets of station data 

to correct locally. Despite these differences, the monthly correlation 

between MSWEP and CHIRPS shows a high correlation across most 

regions, except for Central Asia (Extended Data Fig. 9a). The average 

monthly difference between the 2 datasets varies spatially, reaching 

up to ±40)mm (Extended Data Fig. 9d). Notably, larger discrepancies 

occur in regions such as the Amazon, Central Africa and parts of South-

east Asia. Such convergence between the two products helps reduce 

concerns about the uncertainties owing to different approaches and 

changes in the constellation of Earth-observing satellites that can affect 

the robustness of their representation of changes over time.

The hPET is a global hourly AED dataset developed using ERA5 climate 

datasets and the Food and Agriculture Organization (FAO)9s Penman3

Monteith equation (equation (1)). hPET is available for the global land 

surface at 0.1° spatial resolution covering the period 19813202243. In 

addition, the AED from GLEAM (version 4.2a) is a global dataset derived 

using Penman9s original equation (equation (2)), using satellite and 

reanalysis datasets42. GLEAM is available at a 0.1° spatial resolution 

and covers the period 198032023. hPET is based on the FAO Penman3 

Monteith equation, which computes reference crop evaporation by 

assuming certain surface and aerodynamic characteristics that are con-

stant in time. In contrast, GLEAM calculates aerodynamic conductance 

as a dynamic variable depending on ecosystem characteristics and local 

meteorology and therefore is space and time dependent. Nonetheless, 

given the dominant influence of radiative forcing and atmospheric 

aridity in both computations, their estimates are overall similar. The 

correlation between GLEAM and hPET exceeds 0.9 across 91% of the 



global land surface (Extended Data Fig. 9b), and the monthly average 

difference between them is up to ±3)mm (Extended Data Fig. 9c).

The global AED and precipitation data from the CRU-TS dataset 

are available at a spatial resolution of 0.5°, covering the period from 

1901 to present50. Similarly, the ERA5 reanalysis dataset, represent-

ing the fifth-generation reanalysis from the European Centre for 

Medium-Range Weather Forecasts (ECMWF), is available at a spatial 

resolution of 0.25° from 1940 to present51.

Atmospheric evaporative demand

The hPET is estimated using the FAO-56 Penman3Monteith equation 

(equation (1)), and the GLEAM PET (potential evapotranspiration, AED) 

is calculated using Penman9s equation, including aerodynamic conduct-

ance (equation (2)). In addition, the FAO-56 Penman3Monteith method 

is applied to calculate AED from ERA5 climate datasets for the period 

195032022 and CRU-TS climate datasets for 190132022. The Penman 

and FAO-56 Penman3Monteith methods consider various meteoro-

logical variables such as wind speed, air temperature, radiation and 

humidity to estimate AED:

∆ R G γ u e e

∆ γ u
PET =

0.408 × ( ) + × × ( − )

+ (1 + 0.34 )
(1)T

pm

n−
900

+ 273 2 s a
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where ∆ is the slope of the plot of saturation vapour pressure3 

temperature relationship, Rn is the net radiation, G is the soil heat flux, 

γ is the psychrometric constant, T is the mean daily air temperature at 

2-m height, u2 is the wind speed at 2-m height, (es)2)ea) is the vapour pres-

sure deficit of the air (difference between saturation vapour pressure 

and actual vapour pressure), ρa is the air density, cp is the specific heat 

capacity of air at constant pressure, ga is the aerodynamic conductance, 

and λv is the latent heat of vaporization.

Trend analysis

The trend in SPEI is assessed using the non-parametric Mann3Kendall 

test and Sen9s slope estimator. The Mann3Kendall test identifies upwards 

or downwards trends in the SPEI time series for each pixel. Sen9s slope 

estimator calculates the slope of change in the SPEI series by comput-

ing the median of all possible slopes between data points. This method 

provides a robust estimate of the trend, particularly in the presence of 

outliers or nonlinear patterns. To identify drought events at the pixel 

scale, we utilize SPEI categories (Extended Data Table 1). SPEI values less 

than 21.0 are used to identify areas affected by droughts. We evaluate the 

frequency, duration and magnitude of these drought events (SPEI)<)21) 

by analysing the number of occurrences, the length of consecutive peri-

ods and the intensity of SPEI values during the period from 1981 to 2022.

Data availability

The high-resolution SPEI datasets52, developed using the Standardized 

Precipitation Evapotranspiration Index (SPEI)31, are freely accessible 

through the Centre for Environmental Data Analysis (CEDA) at https://

doi.org/10.5285/ac43da11867243a1bb414e1637802dec and on JASMIN 

at /badc/hydro-jules/data/Global_drought_indices. The CHIRPS data 

can be accessed via the Climate Hazards Group (CHG) at https://www.

chc.ucsb.edu/data/chirps/ (ref. 40). The MSWEP precipitation data-

set is available from the GloH2O website at https://www.gloh2o.org/

mswep/ (ref. 41). The hPET dataset is hosted by the University of Bristol 

at https://data.bris.ac.uk/data/dataset/qb8ujazzda0s2aykkv0oq0ctp 

(ref. 43). The AED data from GLEAM can be accessed at https://www.

gleam.eu/ (ref. 42). The CRU-TS precipitation and AED datasets are 

available through CEDA at https://data.ceda.ac.uk/badc/cru/data/

cru_ts/cru_ts_4.08/ (ref. 50). The ERA5 dataset is available for download 

from the Copernicus Climate Change Service9s Climate Data Store at 

https://cds.climate.copernicus.eu/datasets (ref. 51).

Code availability

This study utilized the SPEI code to calculate drought indices. The SPEI 

code is publicly available on GitHub at https://github.com/sbegueria/

SPEI/. For trend analysis, the Trend package in R was used, which is 

publicly available at https://github.com/cran/trend. The code used 

to develop the global SPEI datasets, perform the trend tests and pro-

duce the figures is available on Zenodo at https://doi.org/10.5281/

zenodo.15073433 (ref. 53).
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Trends in 6-month SPEI for the period 1981–2022. 

Panels a), b), c), and d) display the 6-month SPEI trends (z-units year21) derived 

from the MSWEP_hPET, MSWEP_GLEAM, CHIRPS_hPET, and CHIRPS_GLEAM 

datasets, respectively. Non-significant trends (P-value)>)0.05) are marked in 

gray to improve clarity. The analysis excludes dryland regions with an average 

annual rainfall of less than 180)mm. Panel e) shows the quasi-global (50°S to 

50°N) average 6-month SPEI time series. Panel f) summarizes the SPEI trends 

and areas in drought based on HRSPEI, CRU-TS, and ERA5. The trend derived 

from HRSPEI represents the overall trend, while the deviation (±) reflects the 

spread in trends of the individual datasets (MSWEP_hPET, MSWEP_GLEAM, 

CHIRPS_hPET, and CHIRPS_GLEAM) around the HRSPEI mean trend. The 

deviation is calculated as the standard deviation of trends across these four 

datasets, highlighting the variability in the trends relative to the HRSPEI trend.
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Extended Data Fig. 2 | Trend in 6-month SPEI based on CRU-TS and  

ERA5 during 1981–2022. Panel a) shows the trends in 6-month SPEI using 

precipitation and AED from the CRU-TS dataset. Panel b) illustrates the trends 

in 6-month SPEI derived from precipitation and AED based on ERA5 datasets. 

Non-significant trends (P-value)>)0.05) are marked in gray to improve clarity.  

The analysis excludes dryland regions with an average annual rainfall of less than 

180)mm.



Extended Data Fig. 3 | Trends in the duration of 6-month SPEI droughts. The 

trends in 6-month SPEI are based on a) observed AED and precipitation (Obs) 

and b) climatological AED and observed precipitation (AEDclm). Panel c) shows 

the difference between the drought trends based on Obs and AEDclm. The SPEI 

is based on MSWEP_hPET, with drought duration calculated for each year where 

SPEI values fall below 21. Non-significant trends (P-value)>)0.05) are marked in 

gray for clarity and the trend excludes dry land areas with an average annual 

rainfall below 180)mm.
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Extended Data Fig. 4 | Percentage of areas impacted by severe and extreme 

droughts. Panels a) and b) show the time series of the percentage of areas 

affected by severe (SPEI)<)21.4) and extreme (SPEI)<)21.8) droughts, respectively. 

The dashed vertical lines mark the last five years (201832022), highlighting the 

increase in drought-affected areas compared to 198132017.



Extended Data Fig. 5 | Annual percentage precipitation and AED anomalies 

in 2022. Panels a) and b) show the 2022 precipitation and AED percentage 

anomalies relative to the long-term mean (198132022). Negative values indicate 

reductions, while positive values indicate increases compared to the long-term 

average. Precipitation is based on MSWEP, and AED is based on hPET.
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Extended Data Fig. 6 | Trends in 6-month SPEI based on ERA5 during  

1981–2022. The 6-month SPEI values were computed using the ERA5 

meteorological dataset with combinations of observed AED, observed 

precipitation, climatological AED (AEDclm), and climatological precipitation 

(Prclm). Panel a) shows the trend based on observed precipitation and AED 

(Obs). Panel b) presents the trend based on AEDclm and observed precipitation 

(AEDclm), while panel c) illustrates the trend based on Prclm and observed AED 

(Prclm). Non-significant trends (P-value)>)0.05) are marked in gray to improve 

clarity. The trends also exclude dryland areas with average annual rainfall 

below 180)mm. Panel d) displays the quasi-global average (50°S350°N) 6-month 

SPEI time series for 195032022, based on Obs, AEDclm, and Prclm.



Extended Data Fig. 7 | Monthly trends in precipitation and AED during 

1981–2022. Panels a) and b) illustrate the trends in monthly precipitation based 

on monthly MSWEP and CHIRPS datasets, respectively, while panels c) and d) 

present the trends in monthly AED, derived from GLEAM and hPET datasets, 

respectively. Note that the CHIRPS dataset covers latitudes up to 50°N.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Percentage of areas affected by drought during  

1981–2022. The time series shows the annual percentage of areas in drought 

(SPEI)<)21) for a) Australia, b) East Africa, c) Europe, d) Southern South America, 

e) Western USA, f) Northern Asia, and g) globally. The blue lines represent the 

percentage of areas in drought based on the 6-month SPEI calculated using 

observed AED and precipitation (Obs), while the orange lines indicate the 

percentage of areas in drought based on the SPEI computed using observed 

precipitation and climatological AED (AEDclm). The dashed black vertical lines 

highlight the period from 2018 to 2022. Panel h) summarizes the percentage  

of areas affected by drought during 201832022, compared to the period  

198132017, based on both Obs and AEDclm.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Monthly correlation and differences between 

precipitation and AED during 1981–2022. Panel a) shows the correlation (CC) 

of monthly precipitation between MSWEP and CHIRPS (Pr), while panel b) 

displays the correlation of monthly AED between GLEAM and hPET (AED). 

Panels c) and d) show the average monthly differences between GLEAM and 

hPET (GLEAM-hPET, mm month21) and MSWEP and CHIRPS (MSWEP-CHIRPS, 

mm month21), respectively. The precipitation correlation and difference 

analysis is limited to latitudes up to 50°N due to CHIRPS data availability.
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Extended Data Table 1 | Categories of wet and dry events


