CNCACSA CNCACSA
  • CNCACSA
    • Enquadramento
    • menu CNCACSA

      • Enquadramento
      • Protocolo de Constituição
    • Membros
    • menu membros

      • Entidades que constituem o CNCACSA
    • Missão e Competências
    • menu regulamento interno

      • Missão
      • Competências
      • Regulamento Interno
  • Agenda I&I
  • Publicações
    • ARTIGOS CIENTIFICOS

      menu-artigos

      RELATÓRIOS

      menu-relatorios

      DOCUMENTOS

      menu-documentos

      BROCHURAS

      menu-brochuras-folhetos

      MANUAIS

      menu-manuais

      FOLHETOS

      menu-brochuras-folhetos

      ARTIGOS DO MÊS

      Artigos do mês
  • Projetos
    • PROJETOS CNCACSA

      menu-PROJETOS CNCACSA

      HORTICULTURA

      menu-horticultura

      FRUTICULTURA

      menu-fruticultura

      CEREAIS

      menu-cereais

      LEGUMINOSAS

      menu-leguminosas

      VITICULTURA/ ENOLOGIA

      menu-viticultura-enologia

      OLIVICULTURA

      menu-olivicultura

      PRODUÇÃO ANIMAL

      menu produção animal

      PASTAGENS E FORRAGENS

      menu-pastatgens-forragens

      RECURSOS HÍDRICOS

      menu-recursos-hidricos

      FLORESTA

      menu-floresta

      OUTROS

      menu-outros
  • Divulgação
    • Notícias
    • Menu Notícias

      • Notícias, eventos e tópicos relevantes...
    • Eventos
    • Menu Eventos

      • Calendário de Eventos
      • Eventos Realizados
    • Media
    • Menu Media

      • Fotografias
      • Vídeos
Política de Cookies

Usamos cookies no nosso site para melhorar o desempenho e experiência. Ao continuar, declara aceitar todos os cookies.

Política de Privacidade e Avisos Legais Aceitar
  1. Está em...  
  2. Entrada
  3. Artigos Técnicos
  4. Toward a generalized predictive model of grapevine water status in Douro region from hyperspectral data

Toward a generalized predictive model of grapevine water status in Douro region from hyperspectral data

  • Autor(es)
    Isabel Pôças | Renan Tosin | Igor Gonçalves | Maria Cunha
  • Instituição do Autor correspondente
    Faculdade de Ciências da Universidade do Porto
  • Revista e nº
    Agricultural and Forest Metereology, Volume 280
  • Ano
    2020
  • Veja a publicação aqui
Resumo

The predawn leaf water potential (ѱpd) is an eco-physiological indicator widely used for assessing vines water status and thus supporting irrigation management in several wine regions worldwide. However, the ѱpd is measured in a short time period before sunrise and the collection of a large sample of points is necessary to adequately represent a vineyard, which constitute operational constraints. In the present study, an alternative method based on hyperspectral data derived from a handheld spectroradiometer and machine learning algorithms was tested and validated for assessing grapevine water status. Two test sites in Douro wine region, integrating three grapevine cultivars, were studied for the years of 2014, 2015, and 2017. Four machine learning regression algorithms were tested for predicting the ѱpd as a continuous variable, namely Random Forest (RF), Bagging Trees (BT), Gaussian Process Regression (GPR), and Variational Heteroscedastic Gaussian Process Regression (VH-GPR). Three predicting variables, including two vegetation indices (NRI554,561 and WI900,970) and a time-dynamic variable based on the ѱpd (ѱpd_0), were applied for modelling the response variable (ѱpd). Additionally, the predicted values of ѱpd were aggregated into three classes representing different levels of water deficit (low, moderate, and high) and compared with the corresponding classes of ѱpd observed values. A root mean square error (RMSE) and a mean absolute error (MAE) lower or equal than 0.15 MPa and 0.12 MPa, respectively, were obtained with an external validation data set (n = 71 observations) for the various algorithms. When the modelling results were assessed through classes of values, a high overall accuracy was obtained for all the algorithms (82–83%), with prediction accuracy by class ranging between 79% and 100%. These results show a good performance of the predictive models, which considered a large variability of climatic, environmental, and agronomic conditions, and included various grape cultivars. By predicting both continuous values of ѱpd and classes of ѱpd, the approach presented in this study allowed obtaining 2-levels of accurate information about vines water status, which can be used to feed management decisions of different types of stakeholders.

Palavras-Chave
Douro Region, Região do Douro, grapevine, predictive model of grapevine water status
  • geral@cncalteracoesclimaticas.pt
© 2025 INIAV,I.P.

Financimento:

PDR 2020 - Programa de Desenvolvimento Rural 2020

Portugal 2020

Fundo Europeu Agrícola de Desenvolvimento Rural (FEADER)

Política de Privacidade e Avisos Legais

CNCACSA CNCACSA
  • Inicio
  • CNCACSA
    • Enquadramento
    • Membros
    • Missão e Competências
  • Agenda I&I
  • Publicações
    • Artigos Científicos
    • Documentos
    • Manuais
    • Relatórios
    • Brochuras
    • Folhetos
    • Artigos do Mês
  • Projetos
    • Projetos CNCACSA
    • Horticultura
    • Fruticultura
    • Cereais
    • Leguminosas
    • Viticultura e Enologia
    • Olivicultura
    • Produção animal
    • Pastagens e Forragens
    • Floresta
    • Recursos hídricos
    • Outros
  • Divulgação
    • Notícias
    • Eventos
      • Calendário de eventos
      • Eventos realizados - Apresentações e Imagens
    • Media
      • Fotografias
      • Vídeos